Mining Longitudinal Network for Predicting Company Value

نویسندگان

  • Yingzi Jin
  • Ching-Yung Lin
  • Yutaka Matsuo
  • Mitsuru Ishizuka
چکیده

Real-world social networks are dynamic in nature. Companies continue to collaborate, align strategically, acquire, and merge over time, and receive positive/negative impact from other companies. Consequently, their performance changes with time. If one can understand what types of network changes affect a company’s value, he/she can predict the future value of the company, grasp industry innovations, and make business more successful. However, it often requires continuous records of relational changes, which are often difficult to track for companies, and the models of mining longitudinal network are quite complicated. In this study, we developed algorithms and a system to infer large-scale evolutionary company networks from public news during 1981–2009. Then, based on how networks change over time, as well as the financial information of the companies, we predicted company profit growth. This is the first study of longitudinal network-mining-based company performance analysis in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Type2 Diabetes Using Data Mining Algorithms

Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

A Novel Method for Selecting the Supplier Based on Association Rule Mining

One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011